Micromechanical Analysis of Thermal Expansion Coefficients

نویسنده

  • Christian Karch
چکیده

Thermal expansion coefficients play an important role in the design and analysis of composite structures. A detailed analysis of thermo-mechanical distortion can be performed on microscopic level of a structure. However, for a design and analysis of large structures, the knowledge of effective material properties is essential. Thus, either a theoretical prediction or a numerical estimation of the effective properties is indispensable. In some simple cases, exact analytical solutions for the effective properties can be derived. Moreover, bounds on the effective values exist. However, in dealing with complex heterogeneous composites, numerical methods are becoming increasingly important and more widely used, because of the limiting applicability of the existing (semi-)analytical approaches. In this study, finite-element methods for the calculation of effective thermal expansion coefficients of composites with arbitrary geometrical inclusion configurations are discussed and applied to a heterogeneous lightning protection coating made from Dexmet® copper foil 3CU7-100FA and HexPly® epoxy resin M21. A short overview of some often used (semi-)analytical formulas for effective thermal expansion coefficients of heterogeneous composites is given in addition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micromechanics Modeling of 3D Network Smart Orthotropic Structures

Abstract—Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite ...

متن کامل

Design and Analysis of Thermal Expansion in different Geometries for MEMS Actuators

A MEMS thermal actuator is a micromechanical device that typically generates motion by thermal expansion. In this paper we have studied the thermal expansion of different shapes of thermal actuator and implemented using COMSOL tool.Different shapes are designed and analyzed.Rectangular, triangular and U shaped actuator is designed and implemented.

متن کامل

Design and Implementation of a Micromechanical Silicon Resonant Accelerometer

The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micro...

متن کامل

The Induced Stress Field in Cracked Composites by Heat Flow

A multiscale (micro-macro) approach is proposed for the establishment of the full thermal and induced stress fields in cracked composites that are subjected to heat flow. Both the temperature and stresses distributions are determined by the solution of a boundary value problem with one-way coupling. In the micro level and for combined thermomechanical loading, a micromechanical analysis is empl...

متن کامل

Research on Surface Mounting Technology of Micromechanical Silicon Resonant Accelerometer

Surface mounting technology is a key process in MEMS packaging. The finite element model of package structures was established in this paper according to the designed micromechanical silicon resonant accelerometer. The effects of package substrate materials, adhesive material characteristics, uneven adhesive thickness, and adhesive defects on the micromechanical silicon resonant accelerometer w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014